# Bst II Pro DNA Polymerase Large Fragment (Glycerol-free)

PL703

Version 23.1



## **Product Description**

Bst II Pro DNA Polymerase Large Fragment (Glycerol-free) is obtained from the large fragment of *Bacillus stearothermophilus* DNA Polymerase by directed genetic engineering. It contains the 5'→3' polymerase activity and strong strand displacement activity, but lacks 5'→3' exonuclease activity. It is applicable for isothermal amplifications such as LAMP (Loop-Mediated Isothermal Amplification), HDA (Helicase-Dependent Amplification) and RCA (Rolling Circle Amplification). Bst II Pro DNA Polymerase Large Fragment (Glycerol-free) combines a new generation of hot start technology to inhibit polymerase activity at temperatures below 50°C and release polymerase activity at temperatures above 50°C. It displays good amplification speed, high specificity, strong salt tolerance and reliable thermal stability. The reaction system can be prepared at room temperature. This product is a glycerin-free formula, which can be used to develop lyophilized products. It should be noted that excipient ingredients are not included, please add it according to actual requirements.

### Components

| Components                                                         | PL703-01<br>(1,600 U) | PL703-02<br>(8,000 U) |
|--------------------------------------------------------------------|-----------------------|-----------------------|
| ■ Bst II Pro DNA Polymerase Large Fragment (Glycerol-free, 8 U/μI) | 200 µl                | 1 ml                  |
| ■ 10 × IsothermalAmp Buffer (Freeze-dryable)                       | 500 μl                | 3 × 1 ml              |
| MgSO₄ (100 mM)                                                     | 300 μΙ                | 2 × 1 ml              |

## **Storage**

Store at -30 ~ -15°C and transport at ≤0°C.

## **Applications**

It is applicable for various isothermal amplification reactions such as LAMP, HDA, and RCA.

#### Source

Bst II Pro DNA Polymerase Large Fragment comes from Bacillus stearothermophilus.

## **Unit Definition**

One unit (U) is defined as the amount of enzyme that incorporates 10 nmol of dNTPs into acid-insoluble material in 30 min at 65°C.

## **Self-prepared Materials**

Reagents: dNTP Mix, FIP/BIP Primers, F3/B3 Primers, LoopF/LoopB Primers, Nuclease-free  $ddH_2O$ . Instruments: qPCR instrument, PCR instrument or water bath.

## Notes

For research use only. Not for use in diagnostic procedures.

- 1. It is not applicable for PCR.
- 2. Control the reaction temperature ≤70°C.



### **Experiment Process**

### Take LAMP as an example:

- 1. Thaw 10 × IsothermalAmp Buffer on ice. Vortex for 10 sec to mix thoroughly before use, then centrifuge briefly to the bottom of the tube.
- 2. Follow the table below to prepare the reaction system. The template should be added in the last step.

| Components                                                       | Volume       | Final Concentration |  |
|------------------------------------------------------------------|--------------|---------------------|--|
| 10 × IsothermalAmp Buffer (Freeze-dryable)                       | 2.5 µl       | 1 ×                 |  |
| MgSO <sub>4</sub> (100 mM)                                       | 1.5 µl       | 6 mM (total 8 mM)   |  |
| dNTP Mix (10 mM each)                                            | 3.5 µl       | 1.4 mM each         |  |
| FIP/BIP Primers (100 μM)                                         | 0.4 μl each  | 1.6 μM each         |  |
| F3/B3 Primers (100 μM)                                           | 0.05 μl each | 0.2 μM each         |  |
| LoopF/LoopB Primers (100 μM)                                     | 0.2 μl each  | 0.8 μM each         |  |
| Bst II Pro DNA Polymerase Large Fragment (Glycerol-free, 8 U/μl) | 1.0 µl       | 0.32 U/µl           |  |
| DNA Template                                                     | 1.0 - 5.0 µl |                     |  |
| Nuclease-free ddH <sub>2</sub> O                                 | up to 25 μl  |                     |  |

- ▲ 10 × IsothermalAmp Buffer (Freeze-dryable) may have a small amount of solid precipitated when it is just thawed, please mix well before use.
- ▲ The concentration of Mg<sup>2+</sup> can be adjusted between 6 10 mM.
- ▲ If the experiments requires an anti-contamination system, it is recommended that add dUTP (Vazyme #P033) to a final concentration of 1.4 mM, and UDG enzyme to a final concentration of 0.04 U/μl.
- ▲ If the amount of primers is small, it is recommended to premix the primers first.
- ▲ It is recommended to prepare reagents and templates in different areas to avoid contamination.
- 3. Vortex to mix thoroughly, then centrifuge briefly to the bottom of the tube.
  - ▲ Make sure there are no air bubbles in the reaction system.
- 4. Add template DNA. The final volume of the reaction system should be 25  $\mu$ l.
  - ▲ It is recommended to add the template last to ensure the reliability of the results, because the amplification reaction will start immediately once the template is added.
- 5. Vortex to mix thoroughly, then centrifuge briefly to the bottom of the tube.
- 6. Incubate at  $60 \sim 65^{\circ}$ C for 30 60 min.

## **FAQ & Troubleshooting**

♦ How to design and screen primers for loop-mediated isothermal amplification?

Please refer to http://primerexplorer.jp/e/ for primer design. Version 5 is recommended.

Log in to http://primerexplorer.jp/lampv5e/index.html to download the manual.

For preliminary screening, please refer to the manual. The optimal primer need to be verified by experiments.

♦ How to detect the amplification product?

Both dye-based method and probe-based method can be used to detect amplification products.